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We consider the problem of fuzzy community detection in networks, which complements and expands the
concept of overlapping community structure. Our approach allows each vertex of the graph to belong to
multiple communities at the same time, determined by exact numerical membership degrees, even in the
presence of uncertainty in the data being analyzed. We create an algorithm for determining the optimal
membership degrees with respect to a given goal function. Based on the membership degrees, we introduce a
measure that is able to identify outlier vertices that do not belong to any of the communities, bridge vertices
that have significant membership in more than one single community, and regular vertices that fundamentally
restrict their interactions within their own community, while also being able to quantify the centrality of a
vertex with respect to its dominant community. The method can also be used for prediction in case of
uncertainty in the data set analyzed. The number of communities can be given in advance, or determined by the
algorithm itself, using a fuzzified variant of the modularity function. The technique is able to discover the fuzzy
community structure of different real world networks including, but not limited to, social networks, scientific
collaboration networks, and cortical networks, with high confidence.
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I. INTRODUCTION

Recent studies revealed that graph models of many real
world phenomena exhibit an overlapping community struc-
ture, which is hard to grasp with the classical graph cluster-
ing methods where every vertex of the graph belongs to ex-
actly one community �1�. This is especially true for social
networks, where it is not uncommon that individuals in the
network belong to more than one community at the same
time. Individuals who connect groups in the network func-
tion as “bridges;” hence the concept of “bridge” is defined as
a vertex that crosses structural holes between discrete groups
of people �2�. It is therefore important to define a quantity
that measures the commitment of a node to several commu-
nities in order to obtain a more realistic view of these net-
works.

The intuitive meaning of a bridge vertex may differ in
different kinds of networks that exist beyond sociometrics. In
protein interaction networks, bridges can be proteins with
multiple roles. In cortical networks containing brain areas
responsible for different modalities �for instance, visual and
tactile input processing�, the bridges are presumably the ar-
eas that take part in the integration and higher-level process-
ing of sensory signals. In word association networks, words
with multiple meanings are likely to be bridges.1 The state-
of-the-art overlapping community detection algorithms
�1,3–5� are not able to quantify the notion of bridgeness,
while other attempts at quantifying it �e.g., the participation
index �6�� are concerned only with nonoverlapping commu-
nities.
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1Bridges described in this paper are not to be confused with the
concept of cut edges, which are sometimes also referred as bridges
in classical graph theory. Articulation points �vertices whose re-
moval disconnects the remaining subgraph� bear more similarity to
the concept of bridges described in this paper, but not all bridge
vertices are articulation points. From the structural perspective, the
concept of bridge and bridgeness may be considered as a generali-
zation of the notion of the articulation point, suitably tailored to the
problem of community detection.
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To emphasize the importance of bridge vertices in com-
munity detection and to illustrate the concept, we take the
simple graph shown on Fig. 1�a� as an example. A visual
inspection of this graph most likely suggests two densely
connected communities, with vertex 5 standing somewhere
in between, belonging to both of them at the same time. One
may argue that vertex 5 itself forms a separate community,
but a community with only a single node is usually not
meaningful �and we can also easily add more edges connect-
ing the two communities to vertex 5 to emphasize its shared-
ness�. This property of vertex 5 is not revealed by any clas-
sical community detection algorithm without accounting for
overlaps or outliers.

Hierarchical algorithms build a dendrogram from the ver-
tices by joining them to communities one by one �or starting
from the opposite direction, splitting the graph into two sub-
communities, and then splitting the subcommunities again
until every vertex forms a single community�. For instance,
the modularity optimization algorithm of Clauset et al. �7�
repeatedly merges individual vertices or already created
communities to form bigger ones in a way that greedily
maximizes the modularity of the achieved partition �for the
definition of modularity, see �8� or Eq. �13��. Using this al-
gorithm, vertex 5 was merged to vertex 4 right at the first
step of the algorithm, misleadingly suggesting that they can-
not be separated from each other. The complete dendrogram
is shown on Fig. 1�b�.

A better solution can be achieved by applying the clique
percolation method �CPM� of Palla et al. �1�, which is also
able to discover overlapping communities. In this case, ver-
tex 5 was classified as an outlier �a vertex that does not
belong to any community�. This result stands closer to our
visual inspection and clearly underlines the fact that, in many
cases, we should not assume that a vertex belongs to one and
only one community in the graph. However, vertex 5 is not
an outlier in the sense that removing it from the network
would result in two disconnected components. Vertex 5 is an
integral part of the network, serving as the only connection
between two densely connected subgroups.

II. METHODS

A. Fuzzy community detection as a constrained optimization
problem

The objective of classical community detection in net-
works is to partition the vertex set of the graph into c distinct

subsets in a way that puts densely connected groups of ver-
tices in the same community. c can either be given in ad-
vance or determined by the community detection algorithm
itself. For the time being, let us assume that c is known. In
this case, a convenient representation of a given partition is
the partition matrix U= �uik� �9�. U has N= �V� columns and c
rows, and uik=1 if and only if vertex k belongs to the ith
subset in the partition; otherwise it is zero. From the defini-
tion of the partition, it clearly follows that �i=1

c uik=1 for all
1�k�N. The size of community i can then be calculated as
�k=1

N uik, and for any meaningful partition, we can assume that
0��k=1

N uik�N. These partitions are traditionally called hard
or crisp partitions, because a vertex can belong to one and
only one of the detected communities �9�.

The generalization of the hard partition follows by allow-
ing uik to attain any real value from the interval �0,1�. The
constraints imposed on the partition matrix remain the same
�10�:

uik � �0,1� for all 1 � i � c, 1 � k � N , �1a�

�
i=1

c

uik = 1 for all 1 � k � N , �1b�

0 � �
k=1

N

uik � N for all 1 � i � c . �1c�

Equation �1b� simply states that the total membership degree
for each vertex must be equal to 1. Informally, this means
that vertices have a total membership degree of 1, which will
be distributed among the communities. Equation �1c� is the
formal description of a simple requirement: we are not inter-
ested in empty communities �to which no vertex belongs to
any extent�, and we do not want all vertices to be grouped
into a single community. Partitions of this type are called
fuzzy partitions. The fuzzy membership degrees for a given
vertex can be thought about as components of a trait vector
that describe some �possibly nonobservable� properties of the
entity which the vertex represents in a compact manner.
Trait-based graph models have already been suggested as
models for complex networks �11�.

Since the groundbreaking work of Dunn �12� and Bezdek
�9� on the fuzzy c-means clustering algorithm, many meth-
ods have been developed to search for fuzzy clusters in mul-
tidimensional data sets. For an overview of these methods,
see Bezdek and Pal �13�. However, these methods usually
require a distance function defined in the space to which the
data belong; therefore it is impossible to apply them to graph
partitioning directly, except in cases where the vertices of the
graph are embedded in an n-dimensional space. A recent pa-
per of Zhang et al. �5� discusses a possible embedding of the
vertices of an arbitrary graph into an n-dimensional space
using spectral mapping in order to utilize the fuzzy c-means
algorithm on graphs. They were able to identify meaningful
fuzzy communities in several well-known test graphs �e.g.,
the Zachary karate club network �14� and the network of

(a) (b)

FIG. 1. �a� A simple graph that cannot be partitioned into two
communities without allowing overlaps or outliers. �b� Dendrogram
of the graph as calculated by the greedy modularity optimization
algorithm �7�. The dashed line denotes the level where the dendro-
gram should be cut in order to reach the maximal modularity �de-
noted by q�.
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American college football teams �15��, but the eigenvector
calculations involved in the algorithm render it computation-
ally expensive to use on large networks.

To overcome the need for spatial embedding, we propose
a different approach based on vertex similarities. We observe
that a meaningful partition �let it be hard or fuzzy� should
group vertices that are somehow similar to each other in the
same community. It is reasonable to assume that an edge
between vertex v1 and v2 implies the similarity of v1 and v2,
and likewise the absence of an edge implies dissimilarity. Let
us assume that we have a function s�U , i , j� that satisfies the
following criteria.

�1� s�U , i , j�� �0,1�.
�2� s�U , i , j� is continuous and differentiable for all uij.
�3� s�U , i , j�=1 if the membership values of vi and v j

suggest that they are as similar as possible.
�4� s�U , i , j�=0 if the membership values of vi and v j

suggest that they are completely dissimilar �there is no
chance that they belong to the same community�.

Let us call this s�U , i , j� a similarity function, and for the
sake of simplicity, we simply denote it by sij from now on
�not emphasizing its dependence on U�. Suppose we have a
prior assumption about the actual similarity of the vertices,
denoted by s̃ij for vi and v j. This leads us to the following
equation, which measures the fitness of a given partition U of
graph G�V ,E� by quantifying how precisely it approximates
the prescribed similarity values with sij:

DG�U� = �
i=1

N

�
j=1

N

wij�s̃ij − sij�2, �2�

where the wij’s are optional weights and N= �V� is the number
of vertices in the graph. For the sake of notational simplicity,

we also introduce the matrices W= �wij�, S�U�= �sij�, and S̃

= �s̃ij�. From now on, we assume that S̃=AG, the adjacency
matrix of the graph, in concordance with our assumption that
the similarity of connected vertex pairs should be close to 1
and the similarity of disconnected vertex pairs should be
close to zero. The only thing left is to precisely define a
similarity function sij that satisfies the conditions prescribed
above. The definition we used was the following:

sij = �
k=1

c

ukiukj . �3�

It easily follows that S�U�= �sij�=UTU.2

In summary, the community detection problem in this
framework boils down to the optimization of DG�U� defined
in Eq. �2�: we must find U that minimizes DG�U� while sat-

isfying the conditions of Eq. �1a�–�1c�. The number of clus-

ters c, the weight matrix W, and the desired similarities S̃ are
given in advance �the last one most commonly equals the
adjacency matrix AG�. This is a nonlinear constrained opti-
mization problem. Although there exist a set of necessary
conditions that restrict the set of possible U’s worth evaluat-
ing �16,17�, the computationally most feasible approach to
optimizing DG�U� is to use a gradient-based iterative optimi-
zation method �e.g., simulated annealing�. The equality con-
straints in Eq. �1b� can be incorporated into the goal function
by Lagrangian multipliers �= ��1 ,�2 , . . . ,�N�, resulting in
the following modified goal function:

D̃G�U,�� = �
i=1

N

�
j=1

N

wij�s̃ij − sij�2 + �
i=1

N

�i��
k=1

c

uki − 1� . �4�

The modified goal function compactly encodes the original

goal function and the constraints, since �uij
D̃G�U ,��=0 �for

all 1� i�c and 1� j�N� ensures that we are at a stationary

point of the goal function, and ��D̃G�U ,��=0 ensures that
we satisfy the conditions of Eq. �1b�. Therefore, stationary
points of Eq. �4� will also be stationary points of Eq. �2� and
they do not violate Eq. �1b�.

To employ a gradient-based iterative optimization
method, we need the derivatives of the goal function with
respect to ukl. First we note that

�sij

�ukl
=

�

�ukl
�ukiukj� , �5�

which is zero, except when i= l or j= l:

�sij

�ukl
= �

2ukl if i = l ∧ j = l ,

uki if i � l ∧ j = l ,

ukj if i = l ∧ j � l ,

0 if i � l ∧ j � l .
� �6�

The partial derivative of D̃G�U ,�� with respect to ukl is
therefore

�D̃G

�ukl
= − 2�

i=1

N

wil�s̃il − sil�uki − 2�
j=1

N

wlj�s̃lj − slj�ukj + �l.

�7�

Let eij =wij�s̃ij −sij�. Summing the partial derivatives for k
=1,2 , . . . ,c, making them equal to zero, and substituting Eq.
�1b� back where appropriate leaves us with

�l =
2

c
�
i=1

N

�eil + eli� . �8�

The substitution of Eq. �8� into Eq. �7� yields one compo-
nent of the goal function’s gradient vector:

�D̃G

�ukl
= 2�

i=1

N

�eil + eli�	1

c
− uki
 . �9�

The simplest gradient-based algorithm for finding a local

minimum of D̃G is then the following.

2The matrix form of this problem bears some similarity with the
Cholesky decomposition. For positive weights, DG�U� is zero if and

only if S̃=UTU. This would be easy to solve if U were an n�n
matrix �meaning that the number of communities c is equal to the

number of vertices n�, and S̃ were symmetric and positive definite.
Since none of these conditions hold, all that we can do is to mini-

mize the difference between S̃ and UTU by finding an appropriate
U.
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�1� Start from an arbitrary random partition U�0� and let
t=0.

�2� Calculate the gradient vector of D̃G according to Eq.
�9� and the current U�t�.

�3� If maxk,l��D̃G /�ukl���, stop the iteration and declare
U�t� a solution.

�4� Otherwise, calculate the next partition in the iteration
with the following equation:

uij
�t+1� = uij

�t� + ��t��D̃G

�uij
, �10�

where ��t� is a small step size constant chosen appropriately.
�5� Increase t and continue from step 2.
��t� can be determined by a line search toward the direc-

tion defined by the gradient vector, it can be adjusted itera-
tively according to some simulated annealing schedule �see
�18� for a comparison of strategies�, or it can be made adap-
tive from iteration to iteration by checking the difference of
the values of the goal function in the last few steps: the step
size can be increased if the value of the goal function de-
creased, and it must be decreased if the value of the goal
function increased. We must also make sure that the proce-
dure does not end up in a saddle point or a local maximum of
DG�U�.3

According to our simulations, the quality of the result is
not affected by the initial membership degrees, but the speed
of convergence is. In the extreme case, if we choose all uij to
be equal to 1 /c, all the gradients will be zero �see Eq. �9��,
therefore it is suggested to use a randomized initial partition
matrix. The best results can be achieved by choosing the
initial membership degrees from a uniform distribution while
still satisfying the sum constraints. Uniformity with respect
to the constraints is not straightforward to achieve. The in-
tuitive approach is to choose a random number from the
interval �0,1� for every uij and divide them by their respec-
tive column sums to satisfy Eq. �1b�. However, this method
is biased toward membership vectors describing vertices
equally participating in every community. The proper way to
sample from all possible membership vectors is to draw ev-
ery vector from a Dirichlet distribution with order c and �
= �1,1 , . . . ,1� where � has c coordinates. Such a distribution
can be generated by drawing c independent random samples
from � �1,1� distributions, and dividing each variable by the
sum of all of them �19�.

With N vertices and c communities, the time complexity
of calculating the initial membership is O�Nc�, calculating
the gradient vectors in each step is O�N2c�, choosing the
maximum gradient component for each vertex is O�Nc�, and
calculating the next partition matrix is O�Nc�, assuming that
the step size can be chosen in O�1� �which is true for simu-
lated annealing strategies or adaptive step sizes based on the

decline of the goal function between subsequent steps�. This
results in an overall time complexity of O�N2ch�, where h is
the number of steps necessary for the algorithm to terminate,
meaning that the calculation time is expected to scale qua-
dratically with the number of vertices if N�c, which is con-
firmed by our measurements. The time complexity of our
implementation �Fig. 2� is slightly worse than that of spectral
methods, where an almost linear time complexity can be
achieved by, e.g., using the implicitly restarted Arnoldi
method �20� to compute some of the largest eigenvectors.

For the sake of completeness, we show that U�t+1� remains
a partition matrix if U�t� was a partition matrix. We recall that
a partition matrix satisfies Eqs. �1a� and �1b�. In the first step,
we choose U�0� that satisfies Eq. �1c�. The persistence of Eqs.
�1a� and �1c� is straightforward if we always keep ��t� low
enough, so we only have to prove the persistence of Eq. �1b�:

�
i=1

c

uik
�t+1� = �

i=1

c

uik
�t� + �

i=1

c

��t��D̃G

�uik
�t�

= 1 + 2��t��
i=1

c

�
j=1

N

�ejk + ekj�	1

c
− uij

�t�

= 1 + 2��t��

j=1

N

�ejk + ekj�	1 − �
i=1

c

uij
�t�
 = 1. �11�

B. The concept of bridgeness

One of the advantages of fuzzy community detection is
that it enables us to analyze to what extent a given vertex is
shared among different communities. This measure is called
bridgeness. Intuitively, a vertex that belongs to only one of
the communities has zero bridgeness, while a vertex that
belongs to all of the communities exactly to the same extent
has a bridgeness of 1. We define the bridgeness of a vertex vi
as the distance of its membership vector ui

= �u1i ,u2i , . . . ,uci� from the reference vector � 1
c , 1

c , . . . , 1
c
� in

3Local maxima are easy to avoid by choosing an ��t� that always
decreases the value of the goal function in the next step. Saddle
points and not too deep local minima can be avoided by randomly
mutating the acquired solution and seeing if the iteration converges
back to the original, unmutated solution.

FIG. 2. Running time of our algorithm as a function of the
number of vertices in a graph with four communities. The hardware
used for calculation was a 1.83 GHz Intel Core Duo MacBook.
Fitting f�x�=axb resulted in the parameters a=2.3�10−5	1
�10−6 and b=1.968	4.24�10−3 �standard deviation from the fit-
ted curve is 2.583�, confirming our reasoning on the quadratic run-
ning time of the algorithm.

NEPUSZ et al. PHYSICAL REVIEW E 77, 016107 �2008�

016107-4



the Euclidean vector norm,4 inverted and normalized to the
interval �0,1� as follows:

bi = 1 −� c

c − 1�
j=1

c 	uji −
1

c

2

. �12�

Note that bi attains its theoretical maximum when vi belongs
to all of the communities exactly with the same membership
degree; therefore it is possible that, in this case, vi is more
likely to be an outlier in the graph �a vertex belonging to
none of the communities� rather than a bridge. To distinguish
outliers and real bridges, one should also look at the central-
ity measures of the node: high centrality supports the as-
sumption that the vertex is effectively a bridge, because de-
spite its central role in the network, the algorithm was not
able to assign it to a single community. Low centrality may
mean that the algorithm strived to make the vertex dissimilar
from almost all other vertices, therefore it made it belong to
all the communities. The simplest measure that incorporates
centrality and bridgeness score into a single number is sim-
ply defined as the product of the degree and the bridgeness of
the node, and will be called degree-corrected bridgeness
from now on. Other centrality measures �e.g., betweenness
centrality, closeness centrality, or eigenvector centrality� can
also be used. More sophisticated centrality measures take
into account that several networks contain vertices that have
a crucial role but a relatively low degree �e.g., metabolic
networks, as shown in �6��. We also suggest plotting a cho-
sen centrality measure versus the bridgeness score for each
vertex to visually aid the selection of bridge vertices and
outliers. An example of this kind of plot will be shown in
Sec. IV on Fig. 9.

Bridgeness can be used either in benchmarks to assess
how sensitive the algorithm is to structural overlaps, or in the
analysis of real data to gain information about the roles of
the vertices in the network. Vertices with high centrality and
bridgeness scores close to zero are likely to be in the cores of
the communities, while bridgeness scores close to 1 with a
high centrality suggest vertices standing in a bridgelike po-
sition between communities. In this sense, substracting the
bridgeness score from 1 and multiplying it by an appropriate
centrality measure results in a measure of the centrality of
the vertex with respect to its own communities in the net-
work, similarly to the measure introduced in �21�. Bench-
mark results and the application of bridgeness in data analy-
sis are presented in Sec. IV.

III. PARAMETRIZATION OF THE ALGORITHM

At first glance, it may seem difficult to select the appro-
priate value for each parameter of the algorithm described in
the previous section. However, most of these parameters
have reasonable default values that can be used in most
cases. The only exception is the number of clusters c, for
which we will describe a simple process to identify its most
suitable value. In this section, we explain the key ideas one

should consider when choosing the appropriate values for the
parameters.

A. Choosing the number of communities

The first and most important parameter of the method is c,
defining the number of communities the algorithm tries to
discover in the network. This parameter is the keystone of
most community detection algorithms, and determining c in
a self-consistent way without human intervention is defi-
nitely a complicated problem. Spectral methods rely on the
largest eigenvalues of the adjacency matrix AG or the small-
est eigenvalues of the Laplacian matrix LG=AG−DG �where
DG is a diagonal matrix with diagonal elements ki, the de-
grees of the vertices� to define the number of communities,
but this is usually done by visual inspection, and since the
eigenspectrum of most networks found in real applications
resembles a straight line instead of a step function, the choice
of c is not free of subjective elements. For instance, the
number of eigenvalues of the Laplacian matrix of a graph
that are close to zero is, often used as the value of c, but this
only replaces the value of c with another parameter: a thresh-
old level that decides which eigenvalues are considered to be
close to zero. The threshold is then chosen manually.

In order to get rid of the human intervention needed to
choose c based on the eigenvalues, we propose a different,
divisive approach, which also spares some computation in
the early stage of the algorithm. Initially, we compute a fuzzy
bisection of the graph by setting c=2. After that, whenever
the optimization gets stuck in a local minimum, we add an-
other degree of freedom to the system by increasing c and
continue with the optimization from the last local minimum
until it converges again. We keep on increasing the number
of communities until we find that the newly introduced com-
munity does not improve the overall community structure of
the network �after the algorithm has settled down again in a
minimum�. The community structure is assessed by the
fuzzification of the modularity function. The modularity,
originally introduced in �8�, defines how good a community
structure is by evaluating the difference between the ob-
served intracommunity edge density and the expected one
based on a random graph model conditioned on the degree
sequence of the network. In a random graph with exactly the
same degree sequence as the original graph, the probability
of the existence of an edge between vertices i and j is
kikj /2m, where ki is the degree of vertex i and m is the total
number of edges in the network. The original, crisp modu-
larity of a network with vertex i belonging to community c�i�
is then defined as

Q =
1

2m
�
i,j
	Aij −

kikj

2m


c�i�,c�j�, �13�

where 
c�i�,c�j� is 1 if vertices i and j belong to the same
community �c�i�=c�j��, 0 otherwise. Since the community
structure in our algorithm is not clear-cut, the predicate that
“vertices i and j belong to the same community” also has a
fuzzy truth value between 0 and 1. When the membership
degree uki is considered the probability of the event that ver-

4Other vector norms are also conceivable with different normal-
ization factors to make the result span over the interval �0,1�.
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tex i is in community k, the probability of the event that
vertex i belongs to the same community as vertex j becomes
the dot product of their membership vectors, resulting in the
already introduced similarity measure sij, which can be used
in place of 
c�i�,c�j� to obtain a fuzzified variant of the modu-
larity:

Qf =
1

2m
�
i,j
	Aij −

kikj

2m

sij . �14�

Note that, in the case of crisp communities �there exists only
one k for every vertex i such that uik=1�, the fuzzified modu-
larity Qf is exactly the same as the crisp modularity Q. In
order to determine the optimal number of fuzzy communi-
ties, we iteratively increase c and choose the one that results
in the highest fuzzified modularity Qf.

B. Parametrization of similarity and dissimilarity constraints

Next, we discuss the appropriate choice of the remaining

parameters �W and S̃�. These parameters are not crucial to
the final result of the algorithm, but they provide a way to
inject additional a priori knowledge into the algorithm. Note
that the goal function �see Eq. �2�� is a weighted sum of the
difference between the desired and the calculated similarity
values. The algorithm tries to minimize the difference by
fitting the membership values in an appropriate way. Without

any further a priori knowledge, S̃ is the adjacency matrix AG
and W is a matrix containing only 1’s. This means that the
dot product of the membership vectors defines the similari-
ties, and the desired similarity is 1 for adjacent and 0 for
nonadjacent vertices, stating that the end points of the edges
should be as similar as possible, while keeping disconnected
edges dissimilar. The latter requirement is important: if we
specified only that the end points should be similar for con-
nected vertex pairs, the algorithm would converge to a state
where every vertex belongs to the same community.

Depending on the domain from which the network being
analyzed originates, there may be some additional knowl-
edge about the original mechanism that created the network,
or there may be some uncertainty in the data. W can be used
to fine-tune the algorithm by making use of the domain-
specific knowledge. The general purpose of wij is to empha-
size the connections where the calculated similarity should
match the expected one and skip the connections where it is
hard or impossible to specify an expected similarity. wij can
also be useful in the analysis of weighted networks.

Consider a large friendship network as an example. In a
friendship network, a reasonable assumption is that an exis-
tence of a connection between A and B predicts some kind of
similarity between them. However, a missing connection be-
tween A and B does not necessarily mean dissimilarity, it
might happen that A and B did not have a chance to meet and
form a connection. To account for this, one can assume that
A is similar to its direct neighbors and dissimilar to its
second-order neighbors only �because they were likely to
meet through their common acquaintances�. If necessary, this
assumption can be incorporated into Eq. �2� by setting the
weight of the connections of A beyond its second-order

neighbors to zero. We call this modification the distance-
based relaxation of the model. For an illustration of the con-
cept, see Fig. 3.

The proper choice of wij also allows us to analyze the
community structure of networks with incomplete data. An
example of this kind of a network is described in �22�. A
graph model of the visuotactile cortex of the macaque mon-
key was built based on the neural connections of the brain
areas already documented in the literature. However, there
are actually two kinds of missing edges in this network: the
absence of an edge between brain areas A and B can either
mean that the specific connection was tested for experimen-
tally and found to be nonexistent or that the connection has
not ever been sought for at all �due to, e.g., methodological
difficulties�. Our model can account for this difference by
setting the weight of the suspected connections to zero and
checking the similarity of the vertices involved after the
analysis. We will discuss this later in Sec. IV.

We also note that several other similarity measures can
also be used when one defines the expected similarity matrix

S̃ as long as the similarities are normalized into the range �0,
1�. Based only on the neighborhood of vertices, one can use
the cosine similarity �23� or the Jaccard similarity index
�24�. More sophisticated, matrix-based methods have been
studied in the papers of Jeh and Widom �25�, Blondel et al.
�26�, and Leicht et al. �27�. Some of these measures are not
normalized to the range �0,1�, but this can be done easily by
using an appropriate transformation �e.g., dividing the simi-
larities by the largest one found in the network�.

IV. BENCHMARKS AND APPLICATIONS

Generally, the community structure of a network is not
uniquely defined. Several partitions might exist that approxi-
mate the underlying structure equally well, especially if the
network exhibits an overlapping or hierarchical community
structure. As shown in �1�, overlapping communities are
present in many networks ranging from coauthorship net-
works to protein interactions. We expect our algorithm not
only to discover this overlapping structure but also to exactly
quantify the membership degree of each vertex in all of its
communities.

FIG. 3. The idea of distance-based relaxation. Direct neighbors
of vertex i �denoted by plus signs� are assumed to be similar to
vertex i �shown in black�: s̃ij =1, wij �0. Vertices at most k steps
away from vertex i that are not direct neighbors �denoted by minus
signs� are assumed to be dissimilar: s̃ij =0, wij �0. Vertices farther
away than k steps �denoted by dashed circles� have no similarity
specification with respect to vertex i: wij =0. The figure illustrates
the case of k=2.
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Unless stated otherwise, we parametrized our algorithm as
follows: wij =1 for all i , j and the desired similarity s̃ij was 1
if vertices i and j were connected or i was equal to j, 0
otherwise. The automatic selection of the bridges was
achieved by the standardization of the bridgeness scores: a
vertex was considered a bridge if its bridgeness score was at
least one standard deviation higher than the mean bridgeness
score of the vertices of the network.

A. Benchmarks on computer-generated graphs

We tested our method on several computer-generated net-
works with nonoverlapping and overlapping community
structure as well. Nonoverlapping community structures
were generated on graphs with 1024 vertices grouped into
four communities, each containing 256 vertices. Each vertex
had an average of kin=24 links to other vertices in the same
community and an additional kout=8 links to vertices from
different communities. The generated graph had 16 384
edges and a density of 0.031. Overlapping communities were
introduced by grouping the vertices into two communities
and declaring 128 vertices in both communities as bridge
vertices. Regular vertices kept their connectional patterns,
having 24 links on average to other vertices in their commu-
nity and 8 links to the other community. Bridge vertices had
6 links to other vertices in their community, 12 links to other
bridge vertices in their community, 6 links to bridge vertices
of the other community, and 8 links to regular vertices of the
other community. The edge count and the density were equal
to those in the nonoverlapping case. Figure 4 shows a pos-
sible adjacency matrix for both the nonoverlapping and the
overlapping cases.

In order to compare a fuzzy partition with an expected
hard partition, we introduced the notion of dominant commu-
nity. The dominant community of a vertex is the community
to which it belongs to the greatest extent. Formally, commu-
nity i is the dominant community of vertex j if uij
�maxk ukj for 1�k�c. Out of 1000 graphs with nonover-
lapping community structures, the algorithm classified all
vertices correctly in 97.4% of the test cases after converting
the achieved fuzzy partition to its hard counterpart using the
dominant communities. It was also able to infer the actual
number of communities automatically in all cases using the

fuzzified modularity. To further study the distribution of
intra- and intercommunity edges, we varied the number of
intercommunity edges �kout� from 0 to 24 while keeping kin
+kout constant. When kout reaches 24, the graph practically
becomes an Erdős-Rényi random graph devoid of any com-
munity structure, since the connectional probabilities be-
tween any two of the predefined communities are equal. Fig-
ure 5�a� shows the results of the benchmark. The quality of
the calculated community structure was assessed by the nor-
malized mutual information as described in �28�. Interest-
ingly, the performance of the algorithm degrades suddenly
when the number of intercommunity links exceeds 16. This
is the point where on average there are more links between
the communities than inside them.

Generated graphs with overlapping community structure
were used to test the sensitivity of the algorithm to vertices
standing between communities. The model we used declared
128 vertices out of 512 in both communities as bridge can-
didates, and clearly distinguished them by their different
connectional patterns: bridge candidates tended to connect to
each other with a higher probability than to the regular ver-
tices in their communities, even if they originally belonged
to different communities, creating an overlap between the
two communities. Because of the randomized nature of this
model, not all bridge candidates became real bridges be-
tween the communities, but they had a significantly higher
chance of becoming one. We used the bridgeness value in-
troduced in Sec. II B to assess the quality of the results. We
expected that bridge candidate vertices would exhibit a dif-
ferent bridgeness score distribution than the regular vertices
in the same graph. We also required that vertices identified as
bridges by our algorithm should be among those that have
been declared bridge candidates before test graph generation.
We generated 1000 random graphs using this graph model
and plotted the distribution of the bridgeness scores on Fig.
5�b�. The different nature of the two distributions was sup-
ported by a Kolmogorov-Smirnov test �p value less than
2.2�10−16�. Regular vertices usually had lower bridgeness
scores than the bridge candidates, and we found that 92.8%
of the identified bridges �based on their standardized bridge-

(a) (b)

FIG. 4. Adjacency matrices of graphs with nonoverlapping �a�
and overlapping �b� community structure used for benchmarking
our algorithm.
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FIG. 5. �a� Performance of the algorithm for a graph with non-
overlapping community structure. Intercluster link count �kout� was
varied while keeping the average degree �kin+kout� constant. The
quality of the obtained result was measured using the normalized
mutual information of the found and real communities �28�. �b�
Frequencies of bridgeness values in a graph with overlapping com-
munity structure. Thin line shows frequencies for regular nodes,
thick line shows frequencies for bridge nodes. The bin width of the
histogram was set to 0.01 �100 bins�.
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ness scores� were among bridge candidates, confirming that
the algorithm is sensitive to the existence of overlaps be-
tween communities.

B. Social and collaboration networks

To evaluate the performance of our method on a real data
set, we used the social network of the academic staff of a
given faculty of a U.K. university consisting of three sepa-
rate schools. The network structure was constructed from tie
strength measured with a questionnaire, where the items
formed a reliable scale. Reliability was assessed by Cron-
bach’s � �29�. Our questionnaire achieved a Cronbach’s � of
0.91, suggesting high internal consistency and reliability. The
questionnaire was completed by every member of the aca-
demic staff. In this study, we used the personal friendship
network, ignoring the directionality and the weight of the
edges. A fuzzy community detection for three communities
was performed on the graph. To show the results in gray
scale, we decided to draw three individual figures �Figs.
6�a�–6�c��, showing the values of the membership functions
for communities 1, 2, and 3, respectively, using different
shades of gray as fill colors for the vertices. Figure 6�d�
shows the degree-corrected bridgeness values for each ver-
tex. Other centrality measures resulted in the same corrected
bridgeness scores after normalization.

This data set also contained explicit information regarding
the expected community structure, since we knew which

school in the faculty every node belonged to. We defuzzified
the results using the dominant communities for every vertex.
The defuzzification revealed that all crisp communities con-
sisted of almost exclusively the members of a single school
inside the faculty. 75 out of 81 vertices were classified cor-
rectly, four were misclassified �and all of them had a bridge-
ness value greater than 0.7�, and there were two vertices for
which no expectation was given because of lack of informa-
tion in the questionnaire. It is also noteworthy that the maxi-
mal fuzzy modularity �Qf =0.2826� was reached at c=6, sug-
gesting further subdivisions of the schools, although the
improvement of the modularity compared to the case of c
=3 �Qf =0.2541� was not significant.

Degree-corrected bridgeness scores for c=3 �Fig. 6�d��
are particularly interesting. Highly scored individuals belong
to all three communities at the same time to some extent,
maintaining connections to all of them. On the other hand,
vertices with low degree-corrected bridgeness scores can be
thought of as the cores of the communities. We also notice
that the peripheries of the communities also belong almost
equally to all of the communities �note the similar gray
shades in Figs. 6�a�–6�c� for these vertices�, but the degree-
corrected bridgeness scores suppress this effect because of
their low degree. The uncorrected and the degree-corrected
scores are compared side by side on Fig. 7. We also point out
that the uncorrected bridgeness score can be used as a mea-
sure of the centrality of a given vertex with respect to its own
dominant community by subtracting it from 1.

The next data set we studied was the coauthorship net-
work of scientists working on network theory and experi-
ment, as published in �21�. The network consists of 1589
scientist and 2742 weighted, undirected connections. Edge
weights are derived from the number of joint publications: if
authors A and B share a paper where they are both authors
and the paper has n total authors, this contributes by 1

n to the
total weight of the edge. We extracted the giant component
of the network consisting of 379 scientists and 914 connec-
tions and let our algorithm determine the number of commu-
nities using the fuzzified modularity again. The optimum
�Qf =0.7082� was found with c=30 communities. The value

(a) (c)

(b) (d)

FIG. 6. The fuzzy communities of the U.K. university faculty
data set. �a�,�b�,�c� Vertices colored according to the membership
functions of communities 1, 2, and 3, respectively. Darker shades
represent larger membership values. �d� Vertices colored according
to the degree-corrected bridgeness scores. Darker shades represent
higher bridgeness.

(a) (b)

FIG. 7. Comparison of the uncorrected �a� and degree-corrected
bridgeness scores �b� in the U.K. university data set. Vertices are
colored according to their respective bridgeness scores. Darker
shades represent higher bridgeness scores. Note how the uncor-
rected bridgeness score correlates with the centrality of the vertices
in their respective communities.
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of c was confirmed by the visual inspection of the eigenval-
ues of the Laplacian matrix. Without names, we observe that
vertices with the highest centralities according to our mea-
sure were similar to the ones chosen by the community cen-
trality measure introduced in �21� and mostly represented
senior researchers in the field of network science. Bridges
were detected by standardizing the bridgeness values and
considering vertices with a z score higher than 1 as bridges.
The 31 bridge vertices were mostly postdoctorate researchers
who collaborated with more than one senior researcher in the
field.

C. Cortical networks and the case of incomplete data

To test how our method performs on graphs with missing
data �vertex pairs for which no information regarding their
connectedness was known�, we used the graph model of the
macaque monkey’s visuotactile cortex as published in �22�
�see Fig. 8�. The graph consists of 45 vertices representing
brain areas, and 463 directed connections representing neu-
ronal pathways between the areas. Disconnected vertices do
not necessarily mean that there is no connection between
them: some of them have been explicitly tested for and found
to be absent, others have simply not been tested for �but are
generally thought to be absent�, and there are 13 vertex pairs
in total where neuroanatomists strongly suspect that there
exists a connection between them. The graph itself consists

of two distinct and mostly nonoverlapping communities cor-
responding to the visual and the somatosensory cortex. Other
anatomically meaningful subdivisions of the cortices �like
the dorsal and the ventral stream in the visual cortex� are
known as well. We also note that 11 out of the 13 suspected
connections are heteromodal in the sense that they go be-
tween the visual and the somatosensory cortex.

To account for the uncertainty and the directedness of the
edges in the graph, we specified wij as follows: wij was 0 if
there was a nonreciprocal connection between areas i and j
�area i connected to j, but no pathway was found in the
reverse direction� or if the connection was one of the sus-
pected ones, otherwise wij was 1. The optimal fuzzy modu-
larity �0.2766� was reached at c=4. We examined the results
for c=2 and 4. The case of c=2 classified the nodes cor-
rectly: all of the somatosensory areas were associated with
the somatosensory cortex and most of the visual areas were
associated with the visual cortex, except a few areas with a
surprisingly high bridgeness �over 0.85�. The vertex with the
highest bridgeness �0.99� was area 46, a part of the dorsolat-
eral prefrontal cortex, and it does not have functions related
to low-level sensory information processing. Area 46 is
rather a higher-level �supramodal� area, which plays a role in
sustaining attention and working memory, and being a bridge
between the visual and the somatosensory cortex, it inte-
grates visual, tactile, and other information necessary for the
above-mentioned cognitive functions. Other relevant bridges

FIG. 8. Cortical network data
set �22�. Rectangular vertices are
visual areas, circular vertices are
somatosensory areas. Vertices are
colored according to their degree-
corrected bridgeness values for c
=4. Detected bridges are high-
lighted with white text color.
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found with c=4 were area VIP �where the literature has al-
ready suggested that it should be split into two areas VIPm
and VIPp, which establish stronger connections with visual
or sensorimotor areas, respectively �30��, LIP, V4, and 7a.
VIP and LIP are involved with hand and eye coordination,
respectively, and both of these functions require combined
information from visual and tactile signals as well. Area 7a
integrates visual, tactile, and proprioceptive signals. Area V4
was defined originally as the human color center �31,32�,
while it was also suggested that a separate ensemble of V4
neurons successfully encodes complex shapes based on the
curvature of the shape boundaries �33�. The functional het-
erogeneity is in accordance with the subdivision of V4 into
different regions as suggested by Bartels et al. �34�. We con-
clude that the bridges we found are in concordance with the
assumed higher-level roles of these areas. Fuzzy community
detection for c=4 was also able to separate the dorsal and the
ventral stream of the visual cortex; only areas 7a and VIP
were misclassified, but they retained their bridgelike proper-
ties, as well as area 46. The degree-corrected bridgeness val-
ues for c=4 are shown on Fig. 4�c�. Plotting the uncorrected
bridgeness values versus a chosen centrality measure �in our
case, the vertex degree�, shown on Fig. 9 was found to be a
useful visual aid for separating bridge vertices and outliers.

To approximate the probability of the suspected connec-
tions, we calculated the pairwise similarities of the vertices
involved and considered the similarity as the probability of
the existence of a connection. This is based on the idea that
one can consider the membership value uij as the probability
of vertex j belonging to community i. In this sense, the simi-
larity of vertices i and j is the probability of the event that
they are in the same community, and according to our prior
assumption that similarity implies connectivity, we can think
about higher similarity values as precursors for existing con-
nections. Without going into further details and possible neu-
roanatomical implications, we concluded that all supposed
connections of area LIP are less likely than the supposed

connections of VIP, and among the possible unknown con-
nections of VIP, the connections with areas 4 and 6 are the
most probable.

D. Comparison with other overlapping community detection
algorithms

In order to compare our method with earlier attempts at
tackling the problem of overlapping communities, we exam-
ined the CPM algorithm of Palla et al. �1�, the spectral
method of Capocci et al. �4�, and the fuzzy method of Zhang
et al. �5�. We tested all three methods on the example graph
shown on Fig. 1�a� and on the macaque monkey data set
introduced in Sec. IV C. For the CPM algorithm, we used the
original implementation published by the authors �35�. The
algorithm of Zhang et al. had a weight exponent m control-
ling the degree of fuzzification, but since the authors pro-
vided no clue about the suggested value of the parameter, we
used m=2, which is the most typical choice of this parameter
in other known applications of the fuzzy c-means algorithm
�9�.

The proper community structure of the example graph
was detected by all algorithms we considered �including
ours�, although the spectral method of Capocci et al. had to
be tested on a different example graph with three cliques
�each of size 4� and a single connector node, because in the
case of only two communities, the only eigenvector that car-
ries useful information is the first nontrivial one, rendering
correlation calculations meaningless. Moreover, the global
community structure became evident only after proper rear-
rangement of the community closeness matrix provided the
algorithm. The bridgelike property of the connector vertex
was inferred from the zero community closeness values to all
other vertices. The method of Zhang et al. and our method
produced the proper expected partition matrix with all the
vertices except vertex 5 classified strictly to one community
or the other, while vertex 5 belonged to both at the same time
with a membership degree of 0.5. The method of Palla et al.
identified vertex 5 as an outlier vertex, but after more edges
were added to it, it became an overlap between the commu-
nities.

The community structure of the cortical graph seemed to
be a harder problem for the algorithms. The method of Palla
et al. failed to discover the subdivision of the two main com-
munities; only the visual and the somatosensory cortex was
discovered when we used a clique size of 5. Larger clique
sizes resulted in the discovery of the cores of the two com-
munities, but we were not able to recognize the subdivision
of the dorsal and the ventral stream in the visual cortex.
However, the algorithm identified three overlaps �V4, PITv,
and TF� for a clique size of 5 and two other overlaps �LIP
and VIP� for a clique size of 6. Three out of these five over-
laps were identified by our algorithm as well. The commu-
nity closeness matrix calculated by the method of Capocci et
al. was harder to interpret, but vertices V4 and 46 clearly
turned out to be bridges with zero community closeness to
many other vertices. The method of Zhang et al. was highly
sensitive to the exact value of parameter m, classifying 40%
of the vertices as bridges for m=2. �Since the method pro-

FIG. 9. Degree-bridgeness plot of the vertices of the cortical
network data set for c=4. Crosses denote regular vertices and tri-
angles denote bridges. Bridges and the single significant outlier
�area VOT� have also been marked with the name of the corre-
sponding area. The remaining names were omitted for the sake of
clarity. VOT is a biologically relevant example of a vertex with low
degree and high bridgeness.
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vides a membership matrix similar to ours, we used the stan-
dardized bridgeness measure with a z-score threshold of 1.�
Lowering the weight exponent to m=1.3 identified vertices
LIP, 7a, and Ri as bridges.

We found that the results of our algorithm with respect to
community structure discovery and bridge identification do
not contradict the results of existing methods, and all the
bridges found by our algorithm were classified as bridges by
at least one different method. The method of Capocci et al.
complements our algorithm especially well, since it discov-
ers local communities around a given vertex using the com-
munity closeness degrees while our method provides useful
insights into the global structure of the network being ana-
lyzed, also indicating the presence of bridge vertices.

V. CONCLUSION

In this paper, we presented a fuzzy extension of classical
community detection algorithms based on the assumption
that communities of complex networks are formed by verti-
ces with graded commitments toward at least one commu-
nity. Accordingly, every vertex is allowed to belong to mul-
tiple communities with different membership degrees,
represented by a single real value uki� �0,1� for each vertex
i and community k. The U= �uki� matrix encodes the mem-
bership values in a compact form and allows us to define the
similarities of the vertices as S=UTU in its simplest form.
The similarities are then optimized using gradient-based con-
strained optimization methods in order to make connected
vertices similar and disconnected vertices dissimilar. Based

on the results of the fuzzy community detection, we intro-
duced the concept of bridgeness, which can be used to mea-
sure to what extent a given vertex is shared between the
communities. Vertices with high bridgeness values were
shown to be important in various complex networks, includ-
ing �but not limited to� social networks, scientific collabora-
tion networks, and cortical networks. A transformed variant
of bridgeness can be used as a centrality measure with re-
spect to the dominant communities of a vertex.

We emphasize that this algorithm is expected to be highly
useful in the analysis of relatively small data sets �up to the
magnitude of 1000 vertices�. The reason is that the algorithm
assumes that every vertex has the possibility to connect to all
other vertices, and if they do not connect, they do that be-
cause they are of no use to each other. In very large net-
works, this assumption is not always realistic. However, the
distance-based relaxation introduced in Sec. III can still be
used in these cases to account for the upper bound imposed
on the distance of the potentially interacting vertices.
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